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1. 

Circular cylindrical shells are parts of many machines and industrial plants; often, their
sound radiation strongly influences the sound radiated by the whole machine. The
radiation efficiency of a cylindrical shell depends on the acoustic properties of shell modes.

Here only flexural modes of vibration are considered. If the circular cylindrical shell is
simply supported they are expressed by the equation [1]:

u=A sin (mpx/L) cos (n(u−f)) (1)

where x is the axial co-ordinate, u the angular co-ordinate, u the radial displacement,
m=1, 2, . . . the axial mode order, and n=0, 1, 2, . . . the circumferential mode order; L
is the cylinder length, and A and f are two constants.

Some typical plots of natural frequencies against mode order are shown in Figures 1
and 2; modal density is low only in the frequency bands which contain the low frequency
modes.

In the frequency bands with high modal density the radiation efficiency can be calculated
by a statistical approach [2]. In the frequency bands of the low frequency modes the
radiation properties of the single modes are important. Some interesting questions are:
what is the influence of shell shape and material on the efficiency of low frequency modes?
are there any combinations of these parameters which minimize radiation efficiency?

The aim in this Letter to the Editor is to answer these questions. An analytical approach
is used and complicated equations were manipulated and solved with software used for
algebraic manipulation [3, 4].

2.       

The geometric properties of a simply supported cylindrical shell are defined by two
aspect ratios: X= a/L and Y= h/a, where a, L and h are cylinder radius, length and
thickness respectively. The material properties are defined by the ratio Z=E/r of Young’s
modulus and the density, and by the Poisson ratio m (which does not vary significantly
for the range of metals of industrial interest).

Two structural wavenumbers can be defined for a mode of order m, n of a finite length
cylinder: the circumferential wavenumber and the axial wavenumber.

Since there is no edge effect in the circumferential direction, the wavenumber transform
of the mode in this direction shows only one line at the circumferential wavenumber
ks = n/a. On the other hand, there is an edge effect in the axial direction and the
wavenumber transform shows a main peak centred on the axial wavenumber kz =mp/L
and side peaks of lower amplitude. The structural wavenumbers can be expressed in a
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Figure 1. The natural frequencies of the modes of a steel cylinder with radius a=0·05 m, thickness
h=0·001 m, length L=0·8 m.

non-dimensional way by multiplying them by the cylinder radius and Ks = n,
Kz =mpa/L=mpX are obtained.

The radiation efficiency of a mode of order m, n excited in resonance conditions depends
on wavenumbers Ks, and Kz , and on the non-dimensional wavenumber of sound
Ka =vmna/c, where c is the sound speed in air and vmn is the natural frequency which is
equal to the frequency of excitation.

The following radiation conditions are possible: condition 1, Kz qKa and Ks qKa : the
mode is subsonic in both directions and the radiation efficiency is very low; condition 2,
Kz QKa and Ks qKa : the main peak of the axial wavenumber transform is supersonic,
whereas the circumferential wavenumber is subsonic; the whole cylinder surface radiates
like an n-pole [5] and the radiation efficiency is low; condition 3, K2

z +K2
s QK2

a : the mode
is supersonic and has a high radiation efficiency [2, 5]; condition 4, Kz qKa and Ks QKa :
the mode is subsonic in the axial direction and supersonic in the circumferential direction
and the radiation efficiency is low; only the edges of the cylinder radiate (edge mode [2]).

Figure 2. The natural frequencies of the modes of a steel cylinder with radius a=0·5 m, thickness h=0·001 m,
length L=1 m.
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If m=1, the wavenumber transform in axial direction peaks at Kz =0 and the main
peak is always supersonic; therefore only conditions 2 and 3 are relevant. If n=0, the
mode in the circumferential direction behaves like a monopole (breathing mode).

In order to understand the influence of cylinder aspect ratios and material on radiation
properties of low frequency modes, first the structural wavenumbers of these modes have
to be found, and then the equations which define the different conditions of radiation have
to be expressed in terms of X, Y and Z.

An analytical formula for the natural frequency is necessary since it appears in the
acoustic wavenumber. The equation of Soedel [1], which is appropriate for n$ 0 modes
of simply supported cylindrical shells and is based on the Donnell–Mushtari–Vlasov
equation, was chosen. The equation is written in terms of parameters X, Y and Z as

v=
z{K4

z /(K2
s +K2

z )2}+ 1
12{(K2

s +K2
z )2Y2/(1− m2)}zZ

a
. (2)

3.             

The two diagrams of natural frequencies against mode order (Figures 1 and 2) clearly
show that, for low values of m, there is a value of n which minimizes natural frequency;
this value is named nmin (m) and depends on m and on cylinder aspect ratios. The lowest
natural frequency is always associated to the mode with m=1 and nmin (1). The modes with
m=1, 2 and n close to nmin (m) have low frequencies and the maximum probability of
belonging to the low modal density region. Therefore the wavenumbers nmin (1) and nmin (2)
give a clear indication of the circumferential wavenumbers of low frequency modes.

Szechenyi [2] has given a formula for determining the lowest natural frequency for any
value of m and for nr 2. This formula was written in terms of X, Y and Z as

vmin (m)=
z2pXzYzZm
120·25(1− m2)0·25a

. (3)

The circumferential wavenumber Ks = nmin (m) which minimizes natural frequency for
any value of m was found by equating equations (2) and (3):

z2pXzYzZm
120·25(1− m2)0·25a

=
z{K4

z /(K2
s +K2

z )2}+ 1
12{K2

s +K2
z )2Y2/(1− m2)}zZ

a
. (4)

There is an eighth degree equation in Ks . The solution which has physical significance is

nmin (m)=X30·25z2(1− m2)0·25pXm

zY
− p2X2m2. (5)

This equation is rather simple and shows that neither cylinder radius nor Z influence
nmin (m).

Solution (5) was plotted for m=1 and m=2 against X and Y and the contour plots
of Figures 3 and 4 were obtained; these plots are of practical interest since the designer
can enter the aspect ratios and calculate nmin (m). Wavenumber n is an integer; if the point
of co-ordinates X and Y is in the region between two contour lines, the order of the mode
which minimizes natural frequency is that of the closest contour line.

The contour plot for m=1 shows that for pipes and long cylinders (X small)
2E nmin E 5. If the length of the cylinder is equal to the diameter (X=0·5), nmin is higher,
especially if the wall is thin. nmin is very high only for short cylinders (X large) with little
thickness (Y small). Similar conclusions can be drawn from the contour plot for m=2.
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Figure 3. Steel cylinders: the circumferential wavenumber of the mode m=1 with minimum frequency.

4.            

  

The equations which describe the transitions among the radiation conditions were
written in terms of X, Y and Z:

Kz =Ka c Yz =
2z3z1− m2pmXzp4c2m4X4 − p2Zm2X2 +2p2c2m2n2X2 + c2n4

zZ(p4m4X4 +2p2m2n2X2 + n4)
, (6)

Ks =Ka c Ys =
2z3z1− m2z−p4Zm4X4 + p4c2m4n2X4 +2p2c2m2n4X2 + c2n6

zZ(p4m4X4 +2p2m2n2X2 + n4)
, (7)

Figure 4. Steel cylinders: the circumferential wavenumber of the mode m=2 with minimum frequency.
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K2
z +K2

s =K2
a

c Yzs =
2z3z1− m2zp6c2m6X6 + (3c2n2 −Z)p4m4X4 +3p2c2m2n4X2 + c2n6

zZ(p4m4X4 +2p2m2n2X2 + n4)
. (8)

For assigned values of mode order and material properties these equations, which do
not depend on cylinder radius, divide the X–Y plane into the regions represented in
Figure 5. In region 1 condition 1 is satisfied, in region 2 condition 2 is satisfied, and so
on. There are transition zones between subsonic and supersonic conditions in which
Kz QKa and Ks QKa , but K2

z +K2
s qK2

a .
Plots such as those in Figure 5 help in understanding how the acoustic behaviour of the

m, n mode depends on the aspect ratios. Figure 5 refers to steel cylinders
(Z=2·624×107 m2/s2, m=0·3) and shows that condition 1 and condition 4 can be
satisfied only if Y is lower than a maximum value (YM =0·0074) which is the same for
both conditions. The maximum value YM , if n is low, does not depend on mode order and
is expressed by

YM =z3c2z1− m2/Z. (9)

The comparison between Figures 5(a) and 5(b) shows that if n increases (or decreases)
by one, there are not large modifications of radiation properties.

Figure 6 is relevant to the same modes as those in Figure 5, but the cylinder is
made of bronze (Z=1·332×107 m2/s2, m=0·35). The areas of regions 1, 2 and 4 are
larger for a bronze cylinder than for a steel cylinder, and therefore there are
more possibilities of having low radiation efficiency; in particular the extensions of
regions 1 and 4 in Y direction are increased and the YM for a bronze cylinder is
0·0143.

Figure 5. Steel cylinders: the acoustic behaviour of modes (a) m=2, n=3, (b) m=2, n=4 and (c) m=1,
n=3.
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Figure 6. Bronze cylinders: the acoustic behaviour of modes (a) m=2, n=3, (b) m=2, n=4 and (c) m=1,
n=3.

For aluminium cylinders Z=2·652×107 m2/s2, m=0·34. Hence the plots which showed
the radiation properties of the mode against X, Y are very similar to those for steel
cylinders (YM =0·0072).

For steel and aluminium cylinders YM is very small, and therefore the mode is subsonic
in both directions (condition 1) or behaves like an edge mode (condition 4) only if the
cylinder is very thin. For thicker cylinders, there is only one transition between low
radiation efficiency (region 2) and high radiation efficiency (region 3); therefore in the
following considerations only this transition will be dealt with.

The acoustic properties of the single mode are of interest only if the mode has a low
frequency; therefore the most important information about radiation efficiency has to be

Figure 7. Steel cylinders: the acoustic behaviour of the mode m=1 with minimum frequency.
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Figure 8. Steel cylinders: the acoustic behaviour of the mode m=2 with minimum frequency.

introduced in the contour plots (Figures 3 and 4). These plots for each pair X, Y allow
the mode of axial order m that has minimum frequency to be identified. In equation (8),
which defines the transition between low and high radiation efficiency, m was established
and n was set equal to nmin and the following equation was obtained:

Y=(30·75z2(1− m2)0·75c2/pXZm)2/3. (10)

This equation defines the points of the X–Y plane where the transition between low
radiation efficiency happens for the mode of order m which has minimum frequency.
Equation (10) was then plotted together with the contour plots which show the order of
the minimum frequency mode, and the plots of Figures 7 and 8, which relate to
steel cylinders with Yq 0·01, were obtained. These plots summarize the acoustic
behaviour of the low frequency modes of cylinders since, for given values of aspect ratios,
they show whether the mode of axial order m and minimum frequency has high or low
radiation efficiency. Long steel cylinders with XQ 0·5 and little thickness Y=0·016 0·03
radiate with low efficiency if they are excited in the low frequency range.

5. 

This study of the acoustic properties of low frequency modes of cylinders has shown
that for steel and aluminium cylinders the most important transition is that between
condition 2 (subsonic circumferential wavenumber) and condition 3 (supersonic mode).
For cylinders of other materials (e.g. bronze) condition 1 (subsonic mode) and 4 (edge
mode) are more common.

A series of formulas and plots that help one to understand the radiation efficiency of
low frequencies modes has been presented.
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